Predicting Protein–Protein Interactions Using Symmetric Logistic Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Predicting Drug–Target Interactions Using Probabilistic Matrix Factorization
Quantitative analysis of known drug-target interactions emerged in recent years as a useful approach for drug repurposing and assessing side effects. In the present study, we present a method that uses probabilistic matrix factorization (PMF) for this purpose, which is particularly useful for analyzing large interaction networks. DrugBank drugs clustered based on PMF latent variables show pheno...
متن کاملPredicting drug-target interactions by dual-network integrated logistic matrix factorization
In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matr...
متن کاملLogistic Matrix Factorization for Implicit Feedback Data
Collaborative filtering with implicit feedback data involves recommender system techniques for analyzing relationships betweens users and items using implicit signals such as click through data or music streaming play counts to provide users with personalized recommendations. This is in contrast to collaborative filtering with explicit feedback data which aims to model these relationships using...
متن کاملMulti-Task Clustering using Constrained Symmetric Non-Negative Matrix Factorization
Researchers have attempted to improve the quality of clustering solutions through various mechanisms. A promising new approach to improve clustering quality is to combine data from multiple related datasets (tasks) and apply multi-task clustering. In this paper, we present a novel framework that can simultaneously cluster multiple tasks through balanced Intra-Task (within-task) and Inter-Task (...
متن کاملPredicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
MOTIVATION Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug-target interactions and formulating successful computational methods for predicting interactions remains challenging. RESULTS In this study, we consider four different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Information and Modeling
سال: 2021
ISSN: 1549-9596,1549-960X
DOI: 10.1021/acs.jcim.1c00173